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Abstract: Human action in video sequences can be seen asisitas of a moving torso and protruding limbs
undergoing articulated motion. We regard humaroastas three-dimensional shapes induced by theusittes
in the space-time volume. We adopt a recent apprémcanalyzing 2D shapes and generalize it to deth
volumetric space-time action shapes. This methdideg properties of the solution to the Poissonatipn to
extract space-time features such as local spaeedatiency, action dynamics, shape structure, aieetation
and classification. We show that these featuresiseéul for action recognition, detection, and tdugsg. This
method is fast, does not require video alignmemd, ia applicable in many scenarios where the d¢racind is
known. Moreover, we demonstrate the robustnessupiethod to partial occlusions, no rigid deforroas,
significant changes in scale and viewpoint, highgularities in the performance of an action, ang-tjuality
video.

Index Terms- Action representation, space-time analysis, shape analysis, Medial axis transform, Poisson
equation.

starting from the point to hit the boundaries. In
1. INTRODUCTION contrast to the distance transform, the resultoajas
Features extraction and recognition of human adsonfield takes into account many points, on the
a key component in many computer visiorboundaries and, so, reflects more global propedies
applications, such as video surveillance, humarhe silhouette. In addition, it allows extractingamy
computer interface, video indexing and browsinguseful properties of a shape, including part stmect
recognition of gestures, Analysis of sports eveasl as well as local orientation and aspect ratio @& th
dance choreography. Despite the fact that goodtsesudifferent parts simply by differentiation of theiBson
were achieved by traditional action recognitiorsolution. Moreover, unlike existing pair wise
approaches, they still have some limitations. Mafiy comparison measures such as Chamfer and Hausdorff,
them involve computation of optical flow whosewhich are designed to compute a distance measure
estimation is difficult due to, e.g. aperture pmhk, between pairs of shapes, the Poisson based descript
smooth surfaces, and discontinuities. Others emplgyovides description for single shapes and, sas it
feature tracking and face difficulties in casesself- naturally suitable for tasks requiring class madgll
occlusions, change of appearance, and problenes of and learning. Our approach is based on the
initialization. Methods that rely on key frames &ig observation that in video sequences a human action
shapes of foreground silhouettes lack informatiogenerates a space-time shape in the space-time
about the motion. Some approaches are based wriume These shapes are induced by a concatenation
periodicity analysis and are thus limited to cyclicof 2D silhouettes in the space-time volume and
actions. Some of the recent successful works done ¢ontain both the spatial information about the pofse
the area of action recognition have shown thas it ithe human figure at any time (location and oriéaiat
useful to analyze actions by looking at a vide®f the torso and limbs, aspect ratio of differeatly
sequence as a space-time volume (of intensitigsarts), as well as the dynamic information (global
gradients, optical flow, or other local features). body motion and motion of the limbs relative to the
On the other hand, studies in the field of objedbody). Several other approaches use information tha
recognition in 2D images have demonstrated thaould be derived from the space-time shape of an
silhouettes contain detailed information about thaction uses motion history images representatiah an
shape of objects, when a silhouette is sufficientipnalyzes planar slices (such as x-t planes) of the
detailed people can readily identify the object, ospace-time intensity volume. Note that these method
judge its similarity to other shapes. One of thdl-we implicitly use only partial information about the
known shape descriptors is the Medial Axis Distancepace-time shape. Methods for 3D shape analysis and
Transform where each internal pixel of a silhougtte matching have been recently used in computer
assigned a value reflecting its minimum distance tgraphics. However, in their current form, they dii n
the boundary contourThe Medial Axis Transform apply to space-time shapes due to the non rigufity
opened the way to the advent of skeleton-basexttions, the inherent differences between the apati
representations and alternative approach based oraral temporal domains, and the imperfections of the
solution to a Poisson equation. In this approaekhe extracted silhouettes.

internal point is assigned with the mean time remii In this paper, we generalize a method developed for
for a particle undergoing a random-walk proceste analysis of 2D shapes to deal with volumetric
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space-time shapes induced by human actions. Thigich can be treated as 3D object in the(x, yp&cs.
method exploits the solution to the Poisson equnatiolVe analyze STV by using the differential geometric
to extract various shape properties that are atllifor surface properties, such as peaks, pits, vallegs an
shape representation and classification. We adopteadges, which are important action descriptors
some of the relevant properties and extend them tapturing both spatial and temporal properties.e s
deal with space-time shapes. The spatial and teahpoof motion descriptors for a given is called an @tti
domains are different in nature and therefore argketch. The action descriptors are related to uario
treated differently at several stages of our methodlypes of motions and object deformations. The first
Unlike images, where extraction of a silhouette hhig step in our approach is to generate STV by soltheg
be a difficult segmentation problem, the extractidn point correspondence problem between consecutive
a space-time shape from a video sequence can fo@mes. The correspondences are determined using a
simple in many scenarios. In video surveillancéhwit two-step graph theoretical approach. After the STV
fixed camera as well as in various other settitigs, generated, actions descriptors are computed by
appearance of the background is known. In thesmalyzing the differential geometric properties of
cases, using a simple change detection algorith8TV. This method is analyzed using differential
usually leads to satisfactory space-time shapegeometric surface properties while our space-time
Moreover, in cases of motion discontinuities, motio volume representation is essentially derived fromn t
aliasing, and low-quality video, working with same inputi.e. by concatenation of Silhouettes.
silhouettes may be advantageous over many existifkigl given below gives geometries whefrelistance
method that compute optical flow, local space-timeontours and medial axes (in thicker line) Resalts
gradients, or other intensity-based features. same but Laplacian criteria is simpler and cheaper
calculate.
2. MEDIAL AXISTRANSFORM

Medial Axis (MA), also known as Centers of
Maximal Disks, is a useful representation of a shap
for image description and analysis. MA can be
computed on a distance transform, where each oint
labeled to its distance to the background. Recent
algorithms allow one to compute Squared Euclidean
Distance Transform (SEDT) in linear time in any
dimension. While these algorithms provide exact
measures, the only known method to characterize MA
on SEDT, using local tests and Look-Up Tables
(LUT), is limited to 2D and small distance values.

The medial axis of a shape provides a compact
representation of its features and their conndgtivi =
As a result, researchers have discovered and iflre st
exploring its use in many fields, such as topology, - A ~1|oN AS SPACE TIME SHAPES
recognition for grid generation. The medial axis is

defined when the shape is embedded in an Euclide
space and is endowed with a distance functior%ﬂPOISSON EQUATION

Therefore, an expedient route is to efficientlyaoted Consider a silhouetteS surrounded by a simple,
followed by the medial axis construction. In 3D, &alosed contour. A sensible approach to inferring
sphere is callednedial if it meets S the domain properties of the silhouette is to assign to every
boundary, only tangentially in at least two poifftee internal point a value that depends on the relative
medial axisM is defined as the closure of the set oposition of that point within the silhouette. One
centers of all medial spheres. Informally, the rakdi popular example is the distance transform, which
axis of a surface in 3D is the set of all pointstthave assigns to every point within the silhouette a galu
more than one closest point on the surface. They ateflecting its minimal distance to the boundary
often called the medial axis transform (MAT) foath contour, and which can be computed by solving the
3D bounded domain. Eikonal equation {|Vul|? = 1).

Also action representation by temporal templates i&n alternative approach is to place a set of pagiat
done in previous work but these methods implicitithe point and let thenmove in a random walk until
use only partial information about the space tim¢hey hit the contour. Then we can measure various
shape. When the object performs an action in 38, thstatistics of this random walk, such as the meae ti
points on the outer boundary of the object areequired for a particle to hit the boundaries. This
projected as 2D (x, y) contour in the image plake. particular measure can be computed by solving a
sequence of such 2D contours with respect to tinfoisson equation of the forU (x, y, t)= -1 with &,
generates a spatiotemporal volume (STV) in (x).y, ty, t) €S, where the Laplacian &f is defined a¥U =

igl- Laplacian based medial axiscriteria
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0 +0 +U Subject to the Dirichlet boundary Oriéntation and rough aspect ratios of the spaue-ti
X w t shape. Then, we describe how these local properties

conditions U(x, y, t)=0 at the bounding surfa@®. can be integrated into a compact vector of global
In order to cope with the artificial boundary a¢ first  features to represent an action.

and last frames of the video, we impose the Neumann

boundary conditions requiring at those frames. The

induced effect is of a “mirror” in timdJ; = Othat

prevents attenuation of the solution toward thst fir
and last frames.
Note that space and time unit may have different

extents, thus with the ratio, = h, / h, whereh,, h,

are the mesh size in time and in space. Different

values of C. affect the distribution of local _ ) ) )
Fig2-Solution to Poisson Equation for

orientation and saliency features across the spade
X . silhouettes
thus allows us to emphasize different aspects of

actions. In the following we assung, is given.
, i , i 3.2.1 LOCAL FEATURES
Numerical solutions to the Poisson Equation can be

obtained by various methods. We used a simple "WspACE-TIME SALIENCY - Human action can often
cycle” of a geometric multigrid solver which iséiar e gescribed as a moving torso and a collection of
in the number of space-time points. Fig.2 shows g,rts yndergoing articulated motion. Below we
spatla_l crossTcut of the soluthn to the PO'SSOB_escribe how we can identify portions of a spageti
equat|0n obtained for the_ spat_:e-nme shapes Shnwnéhape that are salient both in space and in timghe
High values of U are attained in the (_:entral pathe space-time shape induced by a human action, the
shape, whereas the external protrusions (the head §,ighest values of U are obtained within the human
the limbs) disappear at relatively low values offlie 1,54 Using an appropriate threshold, we can ifjent
isosurfaces of the solution U represent smoothef central part of a human body. However, the
versions of the Dirichlet bounding surfa_lce and a'femaining space-time region includes both the mpvin
perpendicular to the Neumann bounding surfacsits and portions of the torso that are near the
(first and last frames) If we now consider the 3x3,ngaries, where U has low values. Those portions

Hessian matrix H of U at every internal space-timg¢ poundary can be excluded by noticing that they
point, H will vary continuously from one point the 5. high gradient values Following we define
next and we can treat it as providing a measure tha 2

@ =U+3/2|0U | ()

estimates locally the space-time shape near any
interior space-time point. The eigenvectors ancekig Where [0OU =(U,,U y,Ut)
values of H then reveal the local orientation and
aspect ratio of the shape. A 2x2 Hessian and gerEi

values have been used before for describing 3
surface properties This requires specific surfac

representations, ~€.g, surfac_e .normal, surfa s%ace-time points are equally salient. Indeedhrit e
triangulation, surface parameterization, etc. Nttaf hown that, in this caseis constant. In space-time

converting our space-time binary masks to such
surfaces is not a trivial task. In contrast, weraott shapes of natural human actigpschieves its highest

local shape properties at every space-time poijhlues inside the torso and its lowest values e
including internal points by using a 3x3 Hessian ofast moving limbs. Static elongated parts or large
the solution U without any surface representation.  moving parts (e.g., head of a running person) will

only attain intermediate values @f We define the
space-time saliency features as a normalized Marian
The solution to the Poisson equation can be used ab @.

onsider a sphere which is a space-time shape of a
isk growing and shrinking in time. This shape has
rotruding moving parts and, therefore, all of its

3.2 EXTRACTING SPACE-TIME FEATURES

extract a wide variety of useful local shape prtpsr +

We adopted some of the relevant properties and/(X,y,t)=1- log(1+ ¢(x.y 1))
extended them to deal with space-time shapes. The maX, , s (109(+ @ K.y 1))
additional time domain gives rise to new space-time (2)

shape entities that do not exist in the spatial@lom This emphasizes fast moving parts. For actions in
We first show how the Poisson equation can be useghich a human body undergoes a global motion (e.g.,
to characterize space-time points by identifyingcg® 3 walking person), we compensate for the global
time saliency of moving parts and locally judgit@t translation of the body in order to emphasize nmotio
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of parts relative to the torso. This is done bgirfg a eigenvectors and therefore inversely proportiogal t
smooth trajectory (2nd order polynomial) to thethe length Below, we generalize this approach to
centres of mass collected from the entire sequande space-time.

then by aligning this trajectory to a referencenpoi | ot A, = A, = A be the eigen values of H. Then, the
(similarly to figure centric stabilization inThis
essentially is equivalent to redirecting the low
frequency component of the action trajectory to th
temporal axis. Linear fitting would account for g
translation of a shape in the space-time volume.
chose however to use second order fitting to aIIO\E
also acceleration. A third order polynomial would
overcompensate and attenuate the high frequené
components as well, which is undesired. . A, = A, A Corresponds to a space-time “stick”

structure. For example, a small moving object
I generates a slanted space-time “stick,” whereaatia s
) : object has a “stick” shape in the temporal directio
‘ i The informative direction of such a structure i® th
direction of the “stick” which corresponds to therd
eigenvector of H.

first principal eigenvector corresponds to the sgir
girection of the local space-time shape and thed thi
eigenvector corresponds to the most elongated
wzgrection. Inspired by earlier works in the area of
erceptual grouping, and 3D shape reconstructien, w
istinguish between the following three types afdlo
9ace-time structures:

« AU A,=A; Corresponds to a space-time “plate”

structure. For example, a fast moving limb gensrate
slanted space-time surface (“plate”), and a static

vertical torso/limb generates a “plate” parallethe y-t
plane. The informative direction of a “plate” is it
normal which corresponds to the
first eigenvector of H.
A, =A,=A, Corresponds to a space-time ball”
structure which does not have any principal dicetti
4. GLOBAL FEATURES
(@) (b) (©)

In order to represent an action with global feagure
we use weighted moments of the form

Fig 3 Action as space time shapes

Fig 4 Extracted Silhouettes Shapes (a) Walk

action (b) Run action (c) Jack Action — T
(b) © My = j jjw(x, y,Dg(x,y,t)x"yt'd,d d,
(3)
Where W(X,Y,t) is one of the seven weighting
functions. g(X,Yy,t) denotes the characteristic
function of the space time shapes.
] 5. ACTION CLASSIFICATION
(a) (b) (c) For every video sequence, we perform a leave-ohe-ou

Figs Poisson Equation Solution on Space-time procedure, i.e., we remove the entire sequencétgall
Shapes. (a) Walk Action (b) Run Action (c) Jack space-time cubes) from the database while other
Action. actions of the same person remain. Each cube of the
removed sequence is then compared to all the d¢abes
the database and classified using the nearest
3.2.2 SPACE -TIME ORIENTATION neighbour procedure (with Euclidian distance
operating on normalized global features).Thus, &or
We use the 3 x3 Hessian H of the solution to thepace-time cube to be classified correctly, it must
Poisson equation to estimate the local orientagiosh exhibit high similarity to a cube of a differentrpen
aspect ratio of different space-time parts. Itperforming the same action. Indeed, for correctly
eigenvectors correspond to the local principatlassified space-time cubes, the distribution o th
directions and its eigen values are related tddbal person labels, associated with the retrieved neares
curvature in the direction of the correspondingieighbour cubes, is fully populated and no sparse,
implying that our features emphasize action
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dynamics, rather than person shape characteristies.] 0 | 0| 0| 09 0| 70 0| 29626/ 0
The algorithm misclassified 40 out of 78pace-|a9| 0| 0| 0| 09 0| 09 o0 44%19| 6
cubes (5.07 percent error ratefylapsed time is{ai0] 0 | 0 | O | 45/ O| 0| 0| 3. 54 866
186.838248 seconds. Fig. 6a shows action confusion (@)
matrix for the entire database of cubes. Most ef th
errors were caused by the “jump” action which was al| a2 | a3| a4 a3 ap d7 a8 a9 310
confused with the *“skip.” This is a reasonableal | 96| o | 0| 4| o of o o o 1
confusion considering the small temporal exterthef | a2 | o | 202 o| o] o/ of o o 0 0
cubes and partial similarity between dynamics o3 | 0| 0| 42| 2| 0| 0| 1§ Q O 0
these actions. We also ran the same experiment witd | 0| 0| 0| 79 0| 0 O 0 O 0
ordinary space-time shape moments (i.e., subsijuti a5 | 0| 0| 0| 0| 45 O 0 0 O 0
W(X,y,t)=1 in (4). The algorithm misclassified 78 @ | 0| 0| 0] 0] 0] 54 0 2 © 0
out of 789 cubes_(7.91 percent error rate}ing ar] 0] 0] 2} 0] 2] 0O 48 0 0 0
a8 | 0| o| o o] of of of 99 o© 0
momentsup to  ordeN, =4 inspaceand\ =7 o T ol ol ol ol ol ol o o 1oi 6
in time resulting in(m +1)x (m +1)(m + 2)/2- 4= 11¢ [2al0] O 0 0| o| o o of 0 6 86

features (where -4 stands for the no informative ze _ . (b) . . e
moment and the first-order moments in eackl9- 6 (&) Action confusion in classification

direction). Further experiments with all combinago €XPeriment using the method in [16]. (al-“bend,” a2

of maximal orders between 2 and 9 yielded worsédck,” a3-jump,” a4-“pjump,” as-run,” a6-'side,"
7-"skip,” a8-"“walk,” a9-“wavel,” and al0-“wave2”).

results. Note that space-time shapes of an actien & : i ) el ;
very informative and rich as is demonstrated by thg) Action confusion in classification experiment
relatively high classification rates achieved eveth ~ USing our method.

ordinary shape moments. ) .
For each sequence, we solved the Poisson equation

using mesh size),=1,h =3 and computed seven

6. RESULTSAND EXPERIMENTS types of local features: “stick” and “plate” featsy
For action classification and clustering we cdtieca measured at three directions each and the saliency

database of 90 low-resolution (180 x 144 gdeatures. In order to treat both the periodic and n

interlaced 50 fps) video sequences showing nir%eriodic actions in the same framework as welloas t

different people, each performing 10 natural actioncOmpensate for different length of periods, we used

shortly “jack”), ‘jump-forward-on-two-legs” (or each having eight frames With an overla_p of four

siump”), “jump-in-place-on-two-legs” (or “pjump”) frames between the consecutive space-time cubes.
“gallop sideways” (or “side”), “wave-two-hands” (or Moreover, using space-time cu_bes aIonvg a more
“wave2”), “wave one- hand” (or “wavel”), or “bend.” accurate localization in time while classifying ¢pn

To obtain space-time shapes of the actions V\)g'deo sequences in realistic scenarios. We centred
subtracted the median background from each of tfg&Ch space-time cube about its space-time centroid

sequences and used a simple thresholding in coldf2d brought it to a uniform scale in space preservi

space. The resulting silhouettes contained “leaksf the spatial aspect ratio. Note that the coordinate

“intrusions” due to imperfect subtraction, Sh(,idowsr)ormal|zat|0n above does not involve any global

and colour similarities with the background. In ouideo alignment. We then computed global space-
view, the speed of global translation in the reatis tUMe shape features with spatial moments up tororde

(due to different viewpoints or, e.g., differenegt M, =2 and time moments up to ordaR =2 (The

sizes of a tall versus a short person) is lessnmétive  maximal order of moments was chosen empirically by

for action recognition than the shape and spedbeof . . o
limbs relative to the torso. We therefore compemsa{estlng all possible combinations off and M,

for the translation of the center of mass by atigni Petween 1 and 5).

the silhouette sequence to a reference point.
7. CONCLUSION

)
o

al a2 a3 a4 ay ab ay n9

: 9n this paper, we represent actions as space-time
al| 824/ 08] 24| 0| 144 0] 0] 0] 0] 0 shapes and show that such a representation contains

o

az| 20| 34451 | 0]102 0 |20 0] O rich and descriptive information about the action
a3| 14406/435 0 | 87| 0] 58 0] O} O} performed. The quality of the extracted features is

a4| 0| O] 0] 953 0 |08] 0] 08 15 18 gemgnstrated by the success of the relatively smpl

a5| 138138/ 26.2] 0 |29.2) 0 |169] O | 0 | O | classification scheme used (nearest neighbours

a6) 0| 0] 0] 128 0 1849 0 | 0 | 1.2] 12| clagsification and Euclidian distance). In many

ar] 32| 48| 2384 0 [17.5 0 |50.8] 0 | 0 | O | sjtuations, the information contained in a singlace-
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time cube is rich enough for a reliable classifaato Computer Vision and Pattern Recognition, June
be performed, as was demonstrated in the first 1994,

classification experiment. In real-life applicaton g1 R. Polana and R.C. Nelson, “Detection and
reliable performance can be achieved by integrating Recognition of Periodic, Nonrigid Motion,” Int'l
information coming from the entire input sequence - ' '

(all its space-time cubes), as was demonstratatieoy J. Computer Vision, vol. 23, no. 3, 1997.

robustness experiments_ [9] E. Rivlin, S. Dickinson, and A. Rosenfeld,
Our approach has several advantages: First, i doe  “Recognition by Functional Parts,” Proc.
not require video alignment. Second, it is lineathe Computer Vision and Pattern Recognition, pp.

number of space-time points in the shape. The dvera  267-274, 1994,

procesging time (sqlving the Poisson equation anfllO]J. Tangelder and R. Veltkamp, “A Survey of

extracting features) in MATLAB of a 110 x 70 x 50 Content Based 3D Shape Retrieval Methods.”
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