
International Journal of Research in Advent Technology, Vol.2, No.5, May 2014 
E-ISSN: 2321-9637 

 

228 
 

             Features Extraction by using Poisson Equation   
 

Mamta Bhardwaj, Hemant Tulsani, Shalini Rajput  

Electronics and Communication Department, AIACTR, New Delhi - 110031 
Email: mamta.bhardwaj1984@gmail.com 

 

Abstract:  Human action in video sequences can be seen as silhouettes of a moving torso and protruding limbs 
undergoing articulated motion. We regard human actions as three-dimensional shapes induced by the silhouettes 
in the space-time volume. We adopt a recent approach for analyzing 2D shapes and generalize it to deal with 
volumetric space-time action shapes. This method utilizes properties of the solution to the Poisson equation to 
extract space-time features such as local space-time saliency, action dynamics, shape structure, and orientation 
and classification. We show that these features are useful for action recognition, detection, and clustering. This 
method is fast, does not require video alignment, and is applicable in   many scenarios where the background is 
known. Moreover, we demonstrate the robustness of our method to partial occlusions, no rigid deformations, 
significant changes in scale and viewpoint, high irregularities in the performance of an action, and low-quality 
video. 
Index Terms- Action representation, space-time analysis, shape analysis, Medial axis transform, Poisson 
equation.  
 

1. INTRODUCTION 

Features extraction and recognition of human action is 
a key component in many computer vision 
applications, such as video surveillance, human-
computer interface, video indexing and browsing, 
recognition of gestures, Analysis of sports events, and 
dance choreography. Despite the fact that good results 
were achieved by traditional action recognition 
approaches, they still have some limitations. Many of 
them involve computation of optical flow whose 
estimation is difficult due to, e.g. aperture problems, 
smooth surfaces, and discontinuities. Others employ 
feature tracking and face difficulties in cases of self-
occlusions, change of appearance, and problems of re-
initialization. Methods that rely on key frames Eigen 
shapes of foreground silhouettes lack information 
about the motion. Some approaches are based on 
periodicity analysis and are thus limited to cyclic 
actions. Some of the recent successful works done in 
the area of action recognition have shown that it is 
useful to analyze actions by looking at a video 
sequence as a space-time volume (of intensities, 
gradients, optical flow, or other local features). 
On the other hand, studies in the field of object 
recognition in 2D images have demonstrated that 
silhouettes contain detailed information about the 
shape of objects, when a silhouette is sufficiently 
detailed people can readily identify the object, or 
judge its similarity to other shapes. One of the well-
known shape descriptors is the Medial Axis Distance 
Transform where each internal pixel of a silhouette is 
assigned a value reflecting its minimum distance to 
the boundary contour. The Medial Axis Transform 
opened the way to the advent of skeleton-based 
representations and alternative approach based on a 
solution to a Poisson equation. In this approach, each 
internal point is assigned with the mean time required 
for a particle undergoing a random-walk process 

starting from the point to hit the boundaries. In 
contrast to the distance transform, the resulting scalar 
field takes into account many points, on the 
boundaries and, so, reflects more global properties of 
the silhouette. In addition, it allows extracting many 
useful properties of a shape, including part structure 
as well as local orientation and aspect ratio of the 
different parts simply by differentiation of the Poisson 
solution. Moreover, unlike existing pair wise 
comparison measures such as Chamfer and Hausdorff, 
which are designed to compute a distance measure 
between pairs of shapes, the Poisson based descriptor 
provides description for single shapes and, so, it is 
naturally suitable for tasks requiring class modelling 
and learning. Our approach is based on the 
observation that in video sequences a human action 
generates a space-time shape in the space-time 
volume These shapes are induced by a concatenation 
of 2D silhouettes in the space-time volume and 
contain both the spatial information about the pose of 
the human figure at any time (location and orientation 
of the torso and limbs, aspect ratio of different body 
parts), as well as the dynamic information (global 
body motion and motion of the limbs relative to the 
body). Several other approaches use information that 
could be derived from the space-time shape of an 
action uses motion history images representation and 
analyzes planar slices (such as x-t planes) of the 
space-time intensity volume. Note that these methods 
implicitly use only partial information about the 
space-time shape. Methods for 3D shape analysis and 
matching have been recently used in computer 
graphics. However, in their current form, they do not 
apply to space-time shapes due to the non rigidity of 
actions, the inherent differences between the spatial 
and temporal domains, and the imperfections of the 
extracted silhouettes. 
In this paper, we generalize a method developed for 
the analysis of 2D shapes to deal with volumetric 
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space-time shapes induced by human actions. This 
method exploits the solution to the Poisson equation 
to extract various shape properties that are utilized for 
shape representation and classification. We adopted 
some of the relevant properties and extend them to 
deal with space-time shapes. The spatial and temporal 
domains are different in nature and therefore are 
treated differently at several stages of our method. 
Unlike images, where extraction of a silhouette might 
be a difficult segmentation problem, the extraction of 
a space-time shape from a video sequence can be 
simple in many scenarios. In video surveillance with a 
fixed camera as well as in various other settings, the 
appearance of the background is known. In these 
cases, using a simple change detection algorithm 
usually leads to satisfactory space-time shapes. 
Moreover, in cases of motion discontinuities, motion 
aliasing, and low-quality video, working with 
silhouettes may be advantageous over many existing 
method  that compute optical flow, local space-time 
gradients, or other intensity-based features.  

2. MEDIAL AXIS TRANSFORM 

Medial Axis (MA), also known as Centers of 
Maximal Disks, is a useful representation of a shape 
for image description and analysis. MA can be 
computed on a distance transform, where each point is 
labeled to its distance to the background. Recent 
algorithms allow one to compute Squared Euclidean 
Distance Transform (SEDT) in linear time in any 
dimension. While these algorithms provide exact 
measures, the only known method to characterize MA 
on SEDT, using local tests and Look-Up Tables 
(LUT), is limited to 2D and small distance values. 
The medial axis of a shape provides a compact 
representation of its features and their connectivity. 
As a result, researchers have discovered and are still 
exploring its use in many fields, such as topology 
recognition for grid generation. The medial axis is 
defined when the shape is embedded in an Euclidean 
space and is endowed with a distance function. 
Therefore, an expedient route is to efficiently obtained 
followed by the medial axis construction. In 3D, a 
sphere is called medial if it meets S, the domain 
boundary, only tangentially in at least two points. The 
medial axis M is defined as the closure of the set of 
centers of all medial spheres. Informally, the medial 
axis of a surface in 3D is the set of all points that have 
more than one closest point on the surface. They are 
often called the medial axis transform (MAT) for that 
3D bounded domain. 
Also action representation by temporal templates is 
done in previous work but these methods implicitly 
use only partial information about the space time 
shape. When the object performs an action in 3D, the 
points on the outer boundary of the object are 
projected as 2D (x, y) contour in the image plane. A 
sequence of such 2D contours with respect to time 
generates a spatiotemporal volume (STV) in (x, y, t), 

which can be treated as 3D object in the(x, y, t) space. 
We analyze STV by using the differential geometric 
surface properties, such as peaks, pits, valleys and 
ridges, which are important action descriptors 
capturing both spatial and temporal properties. A set 
of motion descriptors for a given is called an action 
sketch. The action descriptors are related to various 
types of motions and object deformations. The first 
step in our approach is to generate STV by solving the 
point correspondence problem between consecutive 
frames. The correspondences are determined using a 
two-step graph theoretical approach. After the STV is 
generated, actions descriptors are computed by 
analyzing the differential geometric properties of 
STV. This method is analyzed using differential 
geometric surface properties while our space-time 
volume representation is essentially derived from the 
same input i.e. by concatenation of Silhouettes. 
Fig1 given below gives geometries where d distance 
contours and medial axes (in thicker line) Results are 
same but Laplacian criteria is simpler and cheaper to 
calculate. 

                  

Fig1-  Laplacian based medial axis criteria 

3. ACTION AS SPACE TIME SHAPES 

3.1 POISSON EQUATION 

Consider a silhouette S surrounded by a simple, 
closed contour. A sensible approach to inferring 
properties of the silhouette is to assign to every 
internal point a value that depends on the relative 
position of that point within the silhouette. One 
popular example is the distance transform, which 
assigns to every point within the silhouette a value 
reflecting its minimal distance to the boundary 
contour, and which can be computed by solving the 
Eikonal equation ( ‖∇�‖� = 1). 
An alternative approach is to place a set of particles at 
the point and let them move in a random walk until 
they hit the contour. Then we can measure various 
statistics of this random walk, such as the mean time 
required for a particle to hit the boundaries. This 
particular measure can be computed by solving a 
Poisson equation of the form ∇U (x, y, t)= -1 with (x, 
y, t) ∈ S, where the Laplacian of U is defined as ∇U = 
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xx∂  + yy∂  + ttU       Subject to the Dirichlet boundary 

conditions U(x, y, t)=0  at the bounding surface S∂ . 
In order to cope with the artificial boundary at the first 
and last frames of the video, we impose the Neumann 
boundary conditions requiring at those frames. The 

induced effect is of a “mirror” in time 0TU = that 

prevents attenuation of the solution toward the first 
and last frames. 
Note that space and time unit may have different 

extents, thus with the ratio /ts t sc h h=  where ,t sh h
are the mesh size in time and in space. Different 

values of tsc  affect the distribution of local 

orientation and saliency features across the space and 
thus allows us to emphasize different aspects of 

actions. In the following we assume tsc is given. 

Numerical solutions to the Poisson Equation can be 
obtained by various methods. We used a simple “w-
cycle” of a geometric multigrid solver which is linear 
in the number of space-time points. Fig.2 shows a 
spatial cross-cut of the solution to the Poisson 
equation obtained for the space-time shapes shown in 
High values of U are attained in the central part of the 
shape, whereas the external protrusions (the head and 
the limbs) disappear at relatively low values of U. The 
isosurfaces of the solution U represent smoother 
versions of the Dirichlet bounding surface and are 
perpendicular to the Neumann bounding surfaces 
(first and last frames)  If we now consider the 3×3 
Hessian matrix H of U at every internal space-time 
point, H will vary continuously from one point to the 
next and we can treat it as providing a measure that 
estimates locally the space-time shape near any 
interior space-time point. The eigenvectors and Eigen 
values of H then reveal the local orientation and 
aspect ratio of the shape. A 2×2 Hessian and its Eigen 
values have been used before for describing 3D 
surface properties  This requires specific surface 
representations, e.g., surface normal, surface 
triangulation, surface parameterization, etc. Note, that 
converting our space-time binary masks to such 
surfaces is not a trivial task. In contrast, we extract 
local shape properties at every space-time point 
including internal points by using a 3×3 Hessian of 
the solution U without any surface representation. 
 
3.2 EXTRACTING SPACE-TIME FEATURES 

The solution to the Poisson equation can be used to 
extract a wide variety of useful local shape properties. 
We adopted some of the relevant properties and 
extended them to deal with space-time shapes. The 
additional time domain gives rise to new space-time 
shape entities that do not exist in the spatial domain. 
We first show how the Poisson equation can be used 
to characterize space-time points by identifying space-
time saliency of moving parts and locally judging the 

orientation and rough aspect ratios of the space-time 
shape. Then, we describe how these local properties 
can be integrated into a compact vector of global 
features to represent an action. 

               

Fig2-Solution to Poisson Equation for 
silhouettes 

 
3.2.1 LOCAL FEATURES 

SPACE-TIME SALIENCY - Human action can often 
be described as a moving torso and a collection of 
parts undergoing articulated motion. Below we 
describe how we can identify portions of a space-time 
shape that are salient both in space and in time. In the 
space-time shape induced by a human action, the 
highest values of U are obtained within the human 
torso. Using an appropriate threshold, we can identify 
the central part of a human body. However, the 
remaining space-time region includes both the moving 
parts and portions of the torso that are near the 
boundaries, where U has low values. Those portions 
of boundary can be excluded by noticing that they 
have high gradient values Following we define  
                  2

  = U+3/2 Uφ ∇                            (1) 

      Where     ( , , )x y tU U U U∇ =  

 
Consider a sphere which is a space-time shape of a 
risk growing and shrinking in time. This shape has no 
protruding moving parts and, therefore, all of its 
space-time points are equally salient. Indeed, it can be 
shown that, in this case φ is constant. In space-time 

shapes of natural human actionsφ achieves its highest 

values inside the torso and its lowest values inside the 
fast moving limbs. Static elongated parts or large 
moving parts (e.g., head of a running person) will 
only attain intermediate values ofφ . We define the 

space-time saliency features as a normalized variant 
of φ . 

( , , )

log(1 ( , , ))
( , , ) 1

max (log(1 ( , , )))x y t S

x y t
w x y t

x y tφ
φ

φ∈

+= −
+

                                                                  (2) 
This emphasizes fast moving parts. For actions in 
which a human body undergoes a global motion (e.g., 
a walking person), we compensate for the global 
translation of the body in order to emphasize motion 



International Journal of Research in Advent Technology, Vol.2, No.5, May 2014 
E-ISSN: 2321-9637 

 

231 
 

of parts relative to the torso. This is done by fitting a 
smooth trajectory (2nd order polynomial) to the 
centres of mass collected from the entire sequence and 
then by aligning this trajectory to a reference point 
(similarly to figure centric stabilization in This 
essentially is equivalent to redirecting the low-
frequency component of the action trajectory to the 
temporal axis. Linear fitting would account for global 
translation of a shape in the space-time volume. We 
chose however to use second order fitting to allow 
also acceleration. A third order polynomial would 
overcompensate and attenuate the high frequency 
components as well, which is undesired. 
 

 
           Fig 3 Action as space time shapes 
 

                                                           
(a)                 (b)                    (c) 

 Fig 4 Extracted Silhouettes Shapes (a) Walk 
action (b) Run action (c) Jack Action 

 

                     
              (a)                   (b)                     (c) 
Fig5 Poisson Equation Solution on Space-time 
Shapes. (a) Walk Action (b) Run Action (c) Jack 
Action. 
 
 
3.2.2 SPACE –TIME ORIENTATION 

 We use the 3 ×3 Hessian H of the solution to the 
Poisson equation to estimate the local orientation and 
aspect ratio of different space-time parts. Its 
eigenvectors correspond to the local principal 
directions and its eigen values are related to the local 
curvature in the direction of the corresponding 

eigenvectors and therefore inversely proportional to 
the length Below, we generalize this approach to 
space-time.  

Let 1 2 3λ λ λ≥ ≥ be the eigen values of H. Then, the 

first principal eigenvector corresponds to the shortest 
direction of the local space-time shape and the third 
eigenvector corresponds to the most elongated 
direction. Inspired by earlier works in the area of 
perceptual grouping, and 3D shape reconstruction, we 
distinguish between the following three types of local 
space-time structures: 

•    1 2 3λ λ λ≈ � Corresponds to a space-time “stick” 

structure. For example, a small moving object 
generates a slanted space-time “stick,” whereas a static 
object has a “stick” shape in the temporal direction. 
The informative direction of such a structure is the 
direction of the “stick” which corresponds to the third 
eigenvector of H. 

• 1 2 3λ λ λ≈�  Corresponds to a space-time “plate” 

structure. For example, a fast moving limb generates a 
slanted space-time surface (“plate”), and a static 
vertical torso/limb generates a “plate” parallel to the y-t 
plane. The informative direction of a “plate” is its 
normal which corresponds to the 
first eigenvector of H. 

• 1 2 3λ λ λ≈ ≈  Corresponds to a space-time ball” 

structure which does not have any principal direction. 

 
4. GLOBAL FEATURES 
In order to represent an action with global features, 
we use weighted moments of the form 

( , , ) ( , , ) p q r
pqr x y tm w x y t g x y t x y t d d d

∞ ∞ ∞

−∞ −∞ ∞

= ∫ ∫ ∫  

                                                                              (3) 
Where ( , , )w x y t  is one of the seven weighting 

functions. ( , , )g x y t  denotes the characteristic 

function of the space time shapes. 

5. ACTION CLASSIFICATION 

For every video sequence, we perform a leave-one-out 
procedure, i.e., we remove the entire sequence (all its 
space-time cubes) from the database while other 
actions of the same person remain. Each cube of the 
removed sequence is then compared to all the cubes in 
the database and classified using the nearest 
neighbour procedure (with Euclidian distance 
operating on normalized global features).Thus, for a 
space-time cube to be classified correctly, it must 
exhibit high similarity to a cube of a different person 
performing the same action. Indeed, for correctly 
classified space-time cubes, the distribution of the 
person labels, associated with the retrieved nearest 
neighbour cubes, is fully populated and no sparse, 
implying that our features emphasize action 
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dynamics, rather than person shape characteristics.  
The algorithm misclassified 40 out of 789 space-
cubes (5.07 percent error rate). Elapsed time is 
186.838248 seconds. Fig. 6a shows action confusion 
matrix for the entire database of cubes. Most of the 
errors were caused by the “jump” action which was 
confused with the “skip.” This is a reasonable 
confusion considering the small temporal extent of the 
cubes and partial similarity between dynamics of 
these actions. We also ran the same experiment with 
ordinary space-time shape moments (i.e., substituting 

( , , )w x y t =1 in (4). The algorithm misclassified 73 

out of 789  cubes (7.91 percent error rate) using 

moments up to     order 4sm =  in space and 7tm =  

in time resulting in ( 1) ( 1)( 2) / 2 4 116t s sm m m+ × + + − =  
features (where -4 stands for the no informative zero 
moment and the first-order moments in each 
direction). Further experiments with all combinations 
of maximal orders between 2 and 9 yielded worse 
results. Note that space-time shapes of an action are 
very informative and rich as is demonstrated by the 
relatively high classification rates achieved even with 
ordinary shape moments. 
 

6. RESULTS AND EXPERIMENTS  

For  action classification and clustering we collected a 
database of 90 low-resolution (180 × 144, de 
interlaced 50 fps) video sequences showing nine 
different people, each performing 10 natural actions 
such as “run,” “walk,” “skip,” “jumping-jack” (or 
shortly “jack”), “jump-forward-on-two-legs” (or 
“jump”), “jump-in-place-on-two-legs” (or “pjump”), 
“gallop sideways” (or “side”), “wave-two-hands” (or 
“wave2”), “wave one- hand” (or “wave1”), or “bend.” 
To obtain space-time shapes of the actions, we 
subtracted the median background from each of the 
sequences and used a simple thresholding in color-
space. The resulting silhouettes contained “leaks” and 
“intrusions” due to imperfect subtraction, shadows, 
and colour similarities with the background. In our 
view, the speed of global translation in the real world 
(due to different viewpoints or, e.g., different step 
sizes of a tall versus a short person) is less informative 
for action recognition than the shape and speed of the 
limbs relative to the torso. We therefore compensate 
for the translation of the center of mass by aligning 
the silhouette sequence to a reference point.  
 

 
 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 

 
a1 82.4 0.8 2.4 0 14.4 0 0 0 0 0 

 
a2 2.0 34.7 51 0 10.2 0 2.0 0 0 0 

 
a 3 1.4 40.6 43.5 0 8.7 0 5.8 0 0 0 

 
a4 0 0 0 95.5 0 0.8 0 0.8 1.5 1.5 

 
a5 13.8 13.8 26.2 0 29.2 0 16.9 0 0 0 

 
a6 0 0 0 12.8 0 84.9 0 0 1.2 1.2 

 
a7 3.2 4.8 23.8 0 17.5 0 50.8 0 0 0 

 
a8 0 0 0 0.9 0 7.0 0 29.6 62.6 0 

 
a9 0 0 0 0.9 0 0.9 0 44.3 51.9 6 

 
a10 0 0 0 4.5 0 0 0 3.6 5.4 86.6 

(a) 
 

 
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 

a1 96 0 0 4 0 0 0 0 0 1 

a2 0 102 0 0 0 0 0 0 0 0 

a3 0 0 42 2 0 0 15 0 0 0 

a4 0 0 0 79 0 0 0 0 0 0 

a5 0 0 0 0 45 0 0 0 0 0 

a6 0 0 0 0 0 51 0 2 0 0 

a7 0 0 2 0 2 0 48 0 0 0 

a8 0 0 0 0 0 0 0 99 0 0 

a9 0 0 0 0 0 0 0 0 101 6 

a10 0 0 0 0 0 0 0 0 6 86 

(b) 
Fig. 6 (a) Action confusion in classification 
experiment using the method in [16]. (a1-“bend,” a2-
“jack,” a3-“jump,” a4-“pjump,” a5-run,” a6-“side,” 
a7-“skip,” a8-“walk,” a9-“wave1,” and a10-“wave2”). 
(b) Action confusion in classification experiment 
using our method. 
 
For each sequence, we solved the Poisson equation 

using mesh sizes sh =1, 3th =  and computed seven 

types of local features: “stick” and “plate” features, 
measured at three directions each and the saliency 
features. In order to treat both the periodic and no 
periodic actions in the same framework as well as to 
compensate for different length of periods, we used a 
sliding window in time to extract space-time cubes, 
each having eight frames with an overlap of four 
frames between the consecutive space-time cubes. 
Moreover, using space-time cubes allows a more 
accurate localization in time while classifying long 
video sequences in realistic scenarios. We centred 
each space-time cube about its space-time centroid 
and brought it to a uniform scale in space preserving 
the spatial aspect ratio. Note that the coordinate 
normalization above does not involve any global 
video alignment. We then computed global space-
time shape features with spatial moments up to order

2sm =  and time moments up to order 2tm =  (The 

maximal order of moments was chosen empirically by 

testing all possible combinations of tm and sm  

between 1 and 5). 

7. CONCLUSION 

In this paper, we represent actions as space-time 
shapes and show that such a representation contains 
rich and descriptive information about the action 
performed. The quality of the extracted features is 
demonstrated by the success of the relatively simple 
classification scheme used (nearest neighbours 
classification and Euclidian distance). In many 
situations, the information contained in a single space-
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time cube is rich enough for a reliable classification to 
be performed, as was demonstrated in the first 
classification experiment. In real-life applications, 
reliable performance can be achieved by integrating 
information coming from the entire input sequence 
(all its space-time cubes), as was demonstrated by the 
robustness experiments. 
 Our approach has several advantages: First, it does 
not require video alignment. Second, it is linear in the 
number of space-time points in the shape. The overall 
processing time (solving the Poisson equation and 
extracting features) in MATLAB of a 110 × 70 × 50 
pre segmented video takes less than 30 seconds on a 
Pentium 4, 3.0 GHz. Third, it has a potential to cope 
with low-quality video data, where other methods that 
are based on intensity features only (e.g., gradients), 
might encounter difficulties. As our experiments 
show, the method is robust to significant changes in 
scale, partial occlusions, and no rigid deformations of 
the actions. 
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